Internal
problem
ID
[1950]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.5
THE
METHOD
OF
FROBENIUS
I.
Exercises
7.5.
Page
358
Problem
number
:
6
Date
solved
:
Tuesday, March 04, 2025 at 01:46:46 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=x^2*(10*x^2+x+5)*diff(diff(y(x),x),x)+x*(48*x^2+3*x+4)*diff(y(x),x)+(36*x^2+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(5+x+10*x^2)*D[y[x],{x,2}]+x*(4+3*x+48*x^2)*D[y[x],x]+(x+36*x^2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(10*x**2 + x + 5)*Derivative(y(x), (x, 2)) + x*(48*x**2 + 3*x + 4)*Derivative(y(x), x) + (36*x**2 + x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)