Internal
problem
ID
[1954]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.5
THE
METHOD
OF
FROBENIUS
I.
Exercises
7.5.
Page
358
Problem
number
:
10
Date
solved
:
Tuesday, March 04, 2025 at 01:46:52 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=10*x^2*(2*x^2+x+1)*diff(diff(y(x),x),x)+x*(66*x^2+13*x+13)*diff(y(x),x)-(10*x^2+4*x+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=10*x^2*(1+x+2*x^2)*D[y[x],{x,2}]+x*(13+13*x+66*x^2)*D[y[x],x]-(1+4*x+10*x^2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(10*x**2*(2*x**2 + x + 1)*Derivative(y(x), (x, 2)) + x*(66*x**2 + 13*x + 13)*Derivative(y(x), x) - (10*x**2 + 4*x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)