13.5.2 problem 5

Internal problem ID [2348]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 1.10. Page 80
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 02:35:56 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 1.635 (sec). Leaf size: 128

dsolve([diff(y(t),t)= 1+y(t)+y(t)^2*cos(t),y(0) = 0],y(t), singsol=all)
 
\[ y = -\frac {4 \sec \left (t \right ) \operatorname {csgn}\left (\sin \left (\frac {t}{2}\right )\right ) \left (\left (\cos \left (t \right )+\frac {\operatorname {csgn}\left (\sin \left (\frac {t}{2}\right )\right )}{4}-\frac {1}{4}\right ) \operatorname {MathieuC}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )+c_1 \left (\cos \left (t \right )+\frac {\operatorname {csgn}\left (\sin \left (\frac {t}{2}\right )\right )}{4}-\frac {1}{4}\right ) \operatorname {MathieuS}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )-\frac {\left (\operatorname {csgn}\left (\sin \left (\frac {t}{2}\right )\right )-1\right ) \left (c_1 \operatorname {MathieuSPrime}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )+\operatorname {MathieuCPrime}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )\right )}{4}\right )}{2 c_1 \operatorname {MathieuS}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )-2 c_1 \operatorname {MathieuSPrime}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )+2 \operatorname {MathieuC}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )-2 \operatorname {MathieuCPrime}\left (-1, -2, \arccos \left (\cos \left (\frac {t}{2}\right )\right )\right )} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{D[y[t],t]== 1+y[t]+y[t]^2*Cos[t],{y[0]==0}},y[t],t,IncludeSingularSolutions -> True]
 

Not solved