12.14.44 problem 46

Internal problem ID [1985]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 46
Date solved : Tuesday, March 04, 2025 at 01:47:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 36
Order:=6; 
ode:=9*x^2*diff(diff(y(x),x),x)+3*x*(x^2+3)*diff(y(x),x)-(-5*x^2+1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_2 \,x^{{2}/{3}} \left (1-\frac {1}{8} x^{2}+\frac {1}{112} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_1 \left (1-\frac {1}{6} x^{2}+\frac {1}{72} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{{1}/{3}}} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 52
ode=9*x^2*D[y[x],{x,2}]+3*x*(3+x^2)*D[y[x],x]-(1-5*x^2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \sqrt [3]{x} \left (\frac {x^4}{112}-\frac {x^2}{8}+1\right )+\frac {c_2 \left (\frac {x^4}{72}-\frac {x^2}{6}+1\right )}{\sqrt [3]{x}} \]
Sympy. Time used: 1.004 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*x**2*Derivative(y(x), (x, 2)) + 3*x*(x**2 + 3)*Derivative(y(x), x) - (1 - 5*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \sqrt [3]{x} \left (\frac {x^{4}}{112} - \frac {x^{2}}{8} + 1\right ) + \frac {C_{1} \left (\frac {x^{4}}{72} - \frac {x^{2}}{6} + 1\right )}{\sqrt [3]{x}} + O\left (x^{6}\right ) \]