13.12.10 problem 10

Internal problem ID [2422]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 2.8, Series solutions. Page 195
Problem number : 10
Date solved : Monday, January 27, 2025 at 05:52:30 AM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (\alpha +1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 81

Order:=6; 
dsolve((1-t^2)*diff(y(t),t$2)-2*t*diff(y(t),t)+alpha*(alpha+1)*y(t)=0,y(t),type='series',t=0);
 
\[ y = \left (1-\frac {\alpha \left (1+\alpha \right ) t^{2}}{2}+\frac {\alpha \left (\alpha ^{3}+2 \alpha ^{2}-5 \alpha -6\right ) t^{4}}{24}\right ) y \left (0\right )+\left (t -\frac {\left (\alpha ^{2}+\alpha -2\right ) t^{3}}{6}+\frac {\left (\alpha ^{4}+2 \alpha ^{3}-13 \alpha ^{2}-14 \alpha +24\right ) t^{5}}{120}\right ) y^{\prime }\left (0\right )+O\left (t^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 127

AsymptoticDSolveValue[(1-t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+\[Alpha]*(\[Alpha]+1)*y[t]==0,y[t],{t,0,"6"-1}]
 
\[ y(t)\to c_2 \left (\frac {1}{60} \left (-\alpha ^2-\alpha \right ) t^5-\frac {1}{120} \left (-\alpha ^2-\alpha \right ) \left (\alpha ^2+\alpha \right ) t^5-\frac {1}{10} \left (\alpha ^2+\alpha \right ) t^5+\frac {t^5}{5}-\frac {1}{6} \left (\alpha ^2+\alpha \right ) t^3+\frac {t^3}{3}+t\right )+c_1 \left (\frac {1}{24} \left (\alpha ^2+\alpha \right )^2 t^4-\frac {1}{4} \left (\alpha ^2+\alpha \right ) t^4-\frac {1}{2} \left (\alpha ^2+\alpha \right ) t^2+1\right ) \]