13.14.13 problem 13

Internal problem ID [2453]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 2.8.2, Regular singular points, the method of Frobenius. Page 214
Problem number : 13
Date solved : Monday, January 27, 2025 at 05:53:10 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Order:=6; 
dsolve(t^3*diff(y(t),t$2)-t*diff(y(t),t)-(t^2+5/4)*y(t)=0,y(t),type='series',t=0);
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 97

AsymptoticDSolveValue[t^3*D[y[t],{t,2}]-t*D[y[t],t]-(t^2+5/4)*y[t]==0,y[t],{t,0,"6"-1}]
 
\[ y(t)\to c_2 e^{-1/t} \left (-\frac {239684276027 t^5}{8388608}+\frac {1648577803 t^4}{524288}-\frac {3127415 t^3}{8192}+\frac {26113 t^2}{512}-\frac {117 t}{16}+1\right ) t^{13/4}+\frac {c_1 \left (-\frac {784957 t^5}{8388608}-\frac {152693 t^4}{524288}-\frac {7649 t^3}{8192}-\frac {31 t^2}{512}+\frac {45 t}{16}+1\right )}{t^{5/4}} \]