Internal
problem
ID
[2129]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.2.
constant
coefficient.
Page
483
Problem
number
:
section
9.2,
problem
15
Date
solved
:
Tuesday, March 04, 2025 at 01:50:37 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)+4*diff(y(x),x)-8*y(x) = 0; ic:=y(0) = 2, D(y)(0) = -2, (D@@2)(y)(0) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,3}]-2*D[y[x],{x,2}]+4*D[y[x],x]-8*y[x]==0; ic={y[0]==2,Derivative[1][y][0] ==-2,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*y(x) + 4*Derivative(y(x), x) - 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): -2, Subs(Derivative(y(x), (x, 2)), x, 0): 2} dsolve(ode,func=y(x),ics=ics)