Internal
problem
ID
[2141]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.2.
constant
coefficient.
Page
483
Problem
number
:
section
9.2,
problem
27
Date
solved
:
Tuesday, March 04, 2025 at 01:50:45 PM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=4*diff(diff(diff(diff(y(x),x),x),x),x)+8*diff(diff(diff(y(x),x),x),x)+19*diff(diff(y(x),x),x)+32*diff(y(x),x)+12*y(x) = 0; ic:=y(0) = 3, D(y)(0) = -3, (D@@2)(y)(0) = -7/2, (D@@3)(y)(0) = 31/4; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,4}]+2*D[y[x],{x,3}]-2*D[y[x],{x,2}]-8*D[y[x],x]-8*y[x]==0; ic={y[0]==5,Derivative[1][y][0] ==-2,Derivative[2][y][0] ==6,Derivative[3][y][0]==8}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(12*y(x) + 32*Derivative(y(x), x) + 19*Derivative(y(x), (x, 2)) + 8*Derivative(y(x), (x, 3)) + 4*Derivative(y(x), (x, 4)),0) ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): -3, Subs(Derivative(y(x), (x, 2)), x, 0): -7/2, Subs(Derivative(y(x), (x, 3)), x, 0): 31/4} dsolve(ode,func=y(x),ics=ics)