12.19.31 problem section 9.3, problem 31

Internal problem ID [2178]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undetermined Coefficients for Higher Order Equations. Page 495
Problem number : section 9.3, problem 31
Date solved : Tuesday, March 04, 2025 at 01:51:10 PM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-2 y&={\mathrm e}^{2 x} \left (\left (-x^{2}+5 x +27\right ) \cos \left (x \right )+\left (9 x^{2}+13 x +2\right ) \sin \left (x \right )\right ) \end{align*}

Maple
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+2*diff(y(x),x)-2*y(x) = exp(2*x)*((-x^2+5*x+27)*cos(x)+(9*x^2+13*x+2)*sin(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.019 (sec). Leaf size: 60
ode=1*D[y[x],{x,3}]-1*D[y[x],{x,2}]+2*D[y[x],x]-2*y[x]==Exp[2*x]*((27+5*x-x^2)*Cos[1*x]+(2+13*x+9*x^2)*Sin[1*x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{2 x} \left (\left (-x^2+x+1\right ) \cos (x)+(2 x+1) \sin (x)\right )+c_3 e^x+c_1 \cos \left (\sqrt {2} x\right )+c_2 \sin \left (\sqrt {2} x\right ) \]
Sympy. Time used: 0.855 (sec). Leaf size: 58
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-(-x**2 + 5*x + 27)*cos(x) - (9*x**2 + 13*x + 2)*sin(x))*exp(2*x) - 2*y(x) + 2*Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} + C_{2} \sin {\left (\sqrt {2} x \right )} + C_{3} \cos {\left (\sqrt {2} x \right )} + \left (- x^{2} \cos {\left (x \right )} + 2 x \sin {\left (x \right )} + x \cos {\left (x \right )} + \sin {\left (x \right )} + \cos {\left (x \right )}\right ) e^{2 x} \]