Internal
problem
ID
[2190]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
43
Date
solved
:
Tuesday, March 04, 2025 at 01:51:24 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+8*diff(diff(diff(y(x),x),x),x)+32*diff(diff(y(x),x),x)+64*diff(y(x),x)+39*y(x) = exp(-2*x)*((4-15*x)*cos(3*x)-(4+15*x)*sin(3*x)); dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,4}]+8*D[y[x],{x,3}]+32*D[y[x],{x,2}]+64*D[y[x],x]+39*y[x]==Exp[-2*x]*((4-15*x)*Cos[3*x]-(4+15*x)*Sin[3*x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-(4 - 15*x)*cos(3*x) + (15*x + 4)*sin(3*x))*exp(-2*x) + 39*y(x) + 64*Derivative(y(x), x) + 32*Derivative(y(x), (x, 2)) + 8*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)