Internal
problem
ID
[2218]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
71
Date
solved
:
Tuesday, March 04, 2025 at 01:51:54 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=4*diff(diff(diff(y(x),x),x),x)-3*diff(y(x),x)-y(x) = exp(-1/2*x)*(2-3*x); ic:=y(0) = -1, D(y)(0) = 15, (D@@2)(y)(0) = -17; dsolve([ode,ic],y(x), singsol=all);
ode=4*D[y[x],{x,3}]-0*D[y[x],{x,2}]-3*D[y[x],x]-1*y[x]==Exp[-x/2]*(2-3*x); ic={y[0]==2,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x - 2)*exp(-x/2) - y(x) - 3*Derivative(y(x), x) + 4*Derivative(y(x), (x, 3)),0) ics = {y(0): -1, Subs(Derivative(y(x), x), x, 0): 15, Subs(Derivative(y(x), (x, 2)), x, 0): -17} dsolve(ode,func=y(x),ics=ics)