Internal
problem
ID
[2225]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
14
Date
solved
:
Tuesday, March 04, 2025 at 01:52:02 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=16*x^4*diff(diff(diff(diff(y(x),x),x),x),x)+96*x^3*diff(diff(diff(y(x),x),x),x)+72*x^2*diff(diff(y(x),x),x)-24*x*diff(y(x),x)+9*y(x) = 96*x^(5/2); dsolve(ode,y(x), singsol=all);
ode=16*x^4*D[y[x],{x,4}]+96*x^3*D[y[x],{x,3}]+72*x^2*D[y[x],{x,2}]-24*x*D[y[x],x]+9*y[x]==96*x^(5/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-96*x**(5/2) + 16*x**4*Derivative(y(x), (x, 4)) + 96*x**3*Derivative(y(x), (x, 3)) + 72*x**2*Derivative(y(x), (x, 2)) - 24*x*Derivative(y(x), x) + 9*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)