Internal
problem
ID
[2262]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.5,
constant
coefficient
homogeneous
system
II.
Page
555
Problem
number
:
section
10.5,
problem
9
Date
solved
:
Tuesday, March 04, 2025 at 01:52:38 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(t),t) = 1/3*y__1(t)+1/3*y__2(t)-y__3(t), diff(y__2(t),t) = -4/3*y__1(t)-4/3*y__2(t)+y__3(t), diff(y__3(t),t) = -2/3*y__1(t)+1/3*y__2(t)]; dsolve(ode);
ode={D[ y1[t],t]==1/3*y1[t]+1/3*y2[t]-1*y3[t],D[ y2[t],t]==-4/3*y1[t]-4/3*y2[t]+1*y3[t],D[ y3[t],t]==-2/3*y1[t]+1/3*y2[t]+0*y3[t]}; ic={}; DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(-y__1(t)/3 - y__2(t)/3 + y__3(t) + Derivative(y__1(t), t),0),Eq(4*y__1(t)/3 + 4*y__2(t)/3 - y__3(t) + Derivative(y__2(t), t),0),Eq(2*y__1(t)/3 - y__2(t)/3 + Derivative(y__3(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t),y__3(t)],ics=ics)