Internal
problem
ID
[2267]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.5,
constant
coefficient
homogeneous
system
II.
Page
555
Problem
number
:
section
10.5,
problem
14
Date
solved
:
Tuesday, March 04, 2025 at 01:52:43 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = 15*y__1(t)-9*y__2(t), diff(y__2(t),t) = 16*y__1(t)-9*y__2(t)]; ic:=y__1(0) = 5y__2(0) = 8; dsolve([ode,ic]);
ode={D[ y1[t],t]==15*y1[t]-9*y2[t],D[ y2[t],t]==16*y1[t]-9*y2[t]}; ic={y1[0]==5,y2[0]==8}; DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(-15*y__1(t) + 9*y__2(t) + Derivative(y__1(t), t),0),Eq(-16*y__1(t) + 9*y__2(t) + Derivative(y__2(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t)],ics=ics)