14.14.17 problem 17

Internal problem ID [2654]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 2. Second order differential equations. Section 2.8.2, Regular singular points, the method of Frobenius. Excercises page 216
Problem number : 17
Date solved : Monday, January 27, 2025 at 06:05:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 45

Order:=6; 
dsolve(t^2*diff(y(t),t$2)+t*(t+1)*diff(y(t),t)-y(t)=0,y(t),type='series',t=0);
 
\[ y = c_1 t \left (1-\frac {1}{3} t +\frac {1}{12} t^{2}-\frac {1}{60} t^{3}+\frac {1}{360} t^{4}-\frac {1}{2520} t^{5}+\operatorname {O}\left (t^{6}\right )\right )+\frac {c_2 \left (-2+2 t -t^{2}+\frac {1}{3} t^{3}-\frac {1}{12} t^{4}+\frac {1}{60} t^{5}+\operatorname {O}\left (t^{6}\right )\right )}{t} \]

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 64

AsymptoticDSolveValue[t^2*D[y[t],{t,2}]+t*(t+1)*D[y[t],t]-y[t]==0,y[t],{t,0,"6"-1}]
 
\[ y(t)\to c_1 \left (\frac {t^3}{24}-\frac {t^2}{6}+\frac {t}{2}+\frac {1}{t}-1\right )+c_2 \left (\frac {t^5}{360}-\frac {t^4}{60}+\frac {t^3}{12}-\frac {t^2}{3}+t\right ) \]