Internal
problem
ID
[2276]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.5,
constant
coefficient
homogeneous
system
II.
Page
555
Problem
number
:
section
10.5,
problem
23
Date
solved
:
Tuesday, March 04, 2025 at 01:52:53 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = -5*y__1(t)-y__2(t)+11*y__3(t), diff(y__2(t),t) = -7*y__1(t)+y__2(t)+13*y__3(t), diff(y__3(t),t) = -4*y__1(t)+8*y__3(t)]; ic:=y__1(0) = 0y__2(0) = 2y__3(0) = 2; dsolve([ode,ic]);
ode={D[ y1[t],t]==-5*y1[t]-1*y2[t]+11*y3[t],D[ y2[t],t]==-7*y1[t]+1*y2[t]+13*y3[t],D[ y3[t],t]==-4*y1[t]-0*y2[t]+8*y3[t]}; ic={y1[0]==0,y2[0]==2,y3[0]==2}; DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(5*y__1(t) + y__2(t) - 11*y__3(t) + Derivative(y__1(t), t),0),Eq(7*y__1(t) - y__2(t) - 13*y__3(t) + Derivative(y__2(t), t),0),Eq(4*y__1(t) - 8*y__3(t) + Derivative(y__3(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t),y__3(t)],ics=ics)