12.23.6 problem section 10.6, problem 6
Internal
problem
ID
[2291]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.6,
constant
coefficient
homogeneous
system
III.
Page
566
Problem
number
:
section
10.6,
problem
6
Date
solved
:
Tuesday, March 04, 2025 at 01:53:17 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}y_{1} \left (t \right )&=-3 y_{1} \left (t \right )+3 y_{2} \left (t \right )+y_{3} \left (t \right )\\ \frac {d}{d t}y_{2} \left (t \right )&=y_{1} \left (t \right )-5 y_{2} \left (t \right )-3 y_{3} \left (t \right )\\ \frac {d}{d t}y_{3} \left (t \right )&=-3 y_{1} \left (t \right )+7 y_{2} \left (t \right )+3 y_{3} \left (t \right ) \end{align*}
✓ Maple. Time used: 0.041 (sec). Leaf size: 114
ode:=[diff(y__1(t),t) = -3*y__1(t)+3*y__2(t)+y__3(t), diff(y__2(t),t) = y__1(t)-5*y__2(t)-3*y__3(t), diff(y__3(t),t) = -3*y__1(t)+7*y__2(t)+3*y__3(t)];
dsolve(ode);
\begin{align*}
y_{1} \left (t \right ) &= {\mathrm e}^{-t} c_1 +c_2 \,{\mathrm e}^{-2 t} \sin \left (2 t \right )+c_3 \,{\mathrm e}^{-2 t} \cos \left (2 t \right ) \\
y_{2} \left (t \right ) &= {\mathrm e}^{-t} c_1 +c_2 \,{\mathrm e}^{-2 t} \cos \left (2 t \right )-c_3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \\
y_{3} \left (t \right ) &= -{\mathrm e}^{-t} c_1 +c_2 \,{\mathrm e}^{-2 t} \sin \left (2 t \right )-c_2 \,{\mathrm e}^{-2 t} \cos \left (2 t \right )+c_3 \,{\mathrm e}^{-2 t} \cos \left (2 t \right )+c_3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \\
\end{align*}
✓ Mathematica. Time used: 0.01 (sec). Leaf size: 158
ode={D[ y1[t],t]==-3*y1[t]+3*y2[t]+1*y3[t],D[ y2[t],t]==1*y1[t]-5*y2[t]-3*y3[t],D[ y3[t],t]==-3*y1[t]+7*y2[t]+3*y3[t]};
ic={};
DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {y1}(t)\to e^{-2 t} \left ((c_1-c_2-c_3) e^t+(c_2+c_3) \cos (2 t)+(-c_1+2 c_2+c_3) \sin (2 t)\right ) \\
\text {y2}(t)\to e^{-2 t} \left ((c_1-c_2-c_3) e^t+(-c_1+2 c_2+c_3) \cos (2 t)-(c_2+c_3) \sin (2 t)\right ) \\
\text {y3}(t)\to e^{-2 t} \left ((-c_1+c_2+c_3) e^t+(c_1-c_2) \cos (2 t)+(-c_1+3 c_2+2 c_3) \sin (2 t)\right ) \\
\end{align*}
✓ Sympy. Time used: 0.211 (sec). Leaf size: 114
from sympy import *
t = symbols("t")
y__1 = Function("y__1")
y__2 = Function("y__2")
y__3 = Function("y__3")
ode=[Eq(3*y__1(t) - 3*y__2(t) - y__3(t) + Derivative(y__1(t), t),0),Eq(-y__1(t) + 5*y__2(t) + 3*y__3(t) + Derivative(y__2(t), t),0),Eq(3*y__1(t) - 7*y__2(t) - 3*y__3(t) + Derivative(y__3(t), t),0)]
ics = {}
dsolve(ode,func=[y__1(t),y__2(t),y__3(t)],ics=ics)
\[
\left [ y^{1}{\left (t \right )} = - C_{3} e^{- t} + \left (\frac {C_{1}}{2} - \frac {C_{2}}{2}\right ) e^{- 2 t} \cos {\left (2 t \right )} - \left (\frac {C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{- 2 t} \sin {\left (2 t \right )}, \ y^{2}{\left (t \right )} = - C_{3} e^{- t} - \left (\frac {C_{1}}{2} - \frac {C_{2}}{2}\right ) e^{- 2 t} \sin {\left (2 t \right )} - \left (\frac {C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{- 2 t} \cos {\left (2 t \right )}, \ y^{3}{\left (t \right )} = C_{1} e^{- 2 t} \cos {\left (2 t \right )} - C_{2} e^{- 2 t} \sin {\left (2 t \right )} + C_{3} e^{- t}\right ]
\]