12.23.8 problem section 10.6, problem 8
Internal
problem
ID
[2293]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.6,
constant
coefficient
homogeneous
system
III.
Page
566
Problem
number
:
section
10.6,
problem
8
Date
solved
:
Tuesday, March 04, 2025 at 01:53:20 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}y_{1} \left (t \right )&=-3 y_{1} \left (t \right )+y_{2} \left (t \right )-3 y_{3} \left (t \right )\\ \frac {d}{d t}y_{2} \left (t \right )&=4 y_{1} \left (t \right )-y_{2} \left (t \right )+2 y_{3} \left (t \right )\\ \frac {d}{d t}y_{3} \left (t \right )&=4 y_{1} \left (t \right )-2 y_{2} \left (t \right )+3 y_{3} \left (t \right ) \end{align*}
✓ Maple. Time used: 0.034 (sec). Leaf size: 132
ode:=[diff(y__1(t),t) = -3*y__1(t)+y__2(t)-3*y__3(t), diff(y__2(t),t) = 4*y__1(t)-y__2(t)+2*y__3(t), diff(y__3(t),t) = 4*y__1(t)-2*y__2(t)+3*y__3(t)];
dsolve(ode);
\begin{align*}
y_{1} \left (t \right ) &= {\mathrm e}^{t} c_1 +c_2 \,{\mathrm e}^{-t} \sin \left (2 t \right )+c_3 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \\
y_{2} \left (t \right ) &= {\mathrm e}^{t} c_1 -c_2 \,{\mathrm e}^{-t} \sin \left (2 t \right )-c_2 \,{\mathrm e}^{-t} \cos \left (2 t \right )-c_3 \,{\mathrm e}^{-t} \cos \left (2 t \right )+c_3 \,{\mathrm e}^{-t} \sin \left (2 t \right ) \\
y_{3} \left (t \right ) &= -{\mathrm e}^{t} c_1 -c_2 \,{\mathrm e}^{-t} \sin \left (2 t \right )-c_2 \,{\mathrm e}^{-t} \cos \left (2 t \right )-c_3 \,{\mathrm e}^{-t} \cos \left (2 t \right )+c_3 \,{\mathrm e}^{-t} \sin \left (2 t \right ) \\
\end{align*}
✓ Mathematica. Time used: 0.01 (sec). Leaf size: 163
ode={D[ y1[t],t]==-3*y1[t]+1*y2[t]-3*y3[t],D[ y2[t],t]==4*y1[t]-1*y2[t]+2*y3[t],D[ y3[t],t]==4*y1[t]-2*y2[t]+3*y3[t]};
ic={};
DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {y1}(t)\to \frac {1}{2} e^{-t} \left ((c_2-c_3) e^{2 t}+(2 c_1-c_2+c_3) \cos (2 t)-2 (c_1+c_3) \sin (2 t)\right ) \\
\text {y2}(t)\to \frac {1}{2} e^{-t} \left ((c_2-c_3) e^{2 t}+(c_2+c_3) \cos (2 t)+(4 c_1-c_2+3 c_3) \sin (2 t)\right ) \\
\text {y3}(t)\to \frac {1}{2} e^{-t} \left ((c_3-c_2) e^{2 t}+(c_2+c_3) \cos (2 t)+(4 c_1-c_2+3 c_3) \sin (2 t)\right ) \\
\end{align*}
✓ Sympy. Time used: 0.174 (sec). Leaf size: 94
from sympy import *
t = symbols("t")
y__1 = Function("y__1")
y__2 = Function("y__2")
y__3 = Function("y__3")
ode=[Eq(3*y__1(t) - y__2(t) + 3*y__3(t) + Derivative(y__1(t), t),0),Eq(-4*y__1(t) + y__2(t) - 2*y__3(t) + Derivative(y__2(t), t),0),Eq(-4*y__1(t) + 2*y__2(t) - 3*y__3(t) + Derivative(y__3(t), t),0)]
ics = {}
dsolve(ode,func=[y__1(t),y__2(t),y__3(t)],ics=ics)
\[
\left [ y^{1}{\left (t \right )} = - C_{3} e^{t} - \left (\frac {C_{1}}{2} - \frac {C_{2}}{2}\right ) e^{- t} \sin {\left (2 t \right )} - \left (\frac {C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{- t} \cos {\left (2 t \right )}, \ y^{2}{\left (t \right )} = C_{1} e^{- t} \cos {\left (2 t \right )} - C_{2} e^{- t} \sin {\left (2 t \right )} - C_{3} e^{t}, \ y^{3}{\left (t \right )} = C_{1} e^{- t} \cos {\left (2 t \right )} - C_{2} e^{- t} \sin {\left (2 t \right )} + C_{3} e^{t}\right ]
\]