14.18.2 problem 2

Internal problem ID [2686]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 2. Second order differential equations. Section 2.11, Differential equations with discontinuous right-hand sides. Excercises page 243
Problem number : 2
Date solved : Monday, January 27, 2025 at 06:06:24 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 3.489 (sec). Leaf size: 167

dsolve([diff(y(t),t$2)+diff(y(t),t)+y(t)=Heaviside(t-Pi)-Heaviside(t-2*Pi),y(0) = 1, D(y)(0) = 0],y(t), singsol=all)
 
\[ y = \frac {\operatorname {Heaviside}\left (t -2 \pi \right ) \left (i \sqrt {3}+3\right ) {\mathrm e}^{-\frac {\left (1+i \sqrt {3}\right ) \left (t -2 \pi \right )}{2}}}{6}+\frac {\left (-3-i \sqrt {3}\right ) \operatorname {Heaviside}\left (t -\pi \right ) {\mathrm e}^{\frac {\left (1+i \sqrt {3}\right ) \left (-t +\pi \right )}{2}}}{6}+\frac {\left (3-i \sqrt {3}\right ) \operatorname {Heaviside}\left (t -2 \pi \right ) {\mathrm e}^{\frac {\left (i \sqrt {3}-1\right ) \left (t -2 \pi \right )}{2}}}{6}+\frac {\operatorname {Heaviside}\left (t -\pi \right ) \left (i \sqrt {3}-3\right ) {\mathrm e}^{-\frac {\left (i \sqrt {3}-1\right ) \left (-t +\pi \right )}{2}}}{6}+\frac {\sqrt {3}\, \sin \left (\frac {\sqrt {3}\, t}{2}\right ) {\mathrm e}^{-\frac {t}{2}}}{3}+{\mathrm e}^{-\frac {t}{2}} \cos \left (\frac {\sqrt {3}\, t}{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right )+\operatorname {Heaviside}\left (t -\pi \right ) \]

Solution by Mathematica

Time used: 0.248 (sec). Leaf size: 308

DSolve[{D[y[t],{t,2}]+D[y[t],t]+y[t]==UnitStep[t-Pi]-UnitStep[t-2*Pi],{y[0]==1,Derivative[1][y][0] ==0}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {1}{3} e^{-t/2} \left (3 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) & t\leq \pi \\ \frac {1}{3} e^{-t/2} \left (-3 e^{\pi /2} \cos \left (\frac {1}{2} \sqrt {3} (\pi -t)\right )+3 e^{t/2}+3 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} e^{\pi /2} \sin \left (\frac {1}{2} \sqrt {3} (\pi -t)\right )+\sqrt {3} \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) & \pi <t\leq 2 \pi \\ \frac {1}{3} e^{-t/2} \left (-3 e^{\pi /2} \cos \left (\frac {1}{2} \sqrt {3} (\pi -t)\right )+3 e^{\pi } \cos \left (\frac {1}{2} \sqrt {3} (2 \pi -t)\right )+3 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} e^{\pi /2} \sin \left (\frac {1}{2} \sqrt {3} (\pi -t)\right )-\sqrt {3} e^{\pi } \sin \left (\frac {1}{2} \sqrt {3} (2 \pi -t)\right )+\sqrt {3} \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) & \text {True} \\ \end {array} \\ \end {array} \]