13.3.13 problem 15

Internal problem ID [2330]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 1.4. Page 24
Problem number : 15
Date solved : Tuesday, March 04, 2025 at 01:55:16 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} t y^{\prime }&=y+\sqrt {t^{2}+y^{2}} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Maple. Time used: 0.250 (sec). Leaf size: 21
ode:=t*diff(y(t),t) = y(t)+(t^2+y(t)^2)^(1/2); 
ic:=y(1) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\begin{align*} y &= -\frac {t^{2}}{2}+\frac {1}{2} \\ y &= \frac {t^{2}}{2}-\frac {1}{2} \\ \end{align*}
Mathematica. Time used: 0.309 (sec). Leaf size: 14
ode=t*D[y[t],t]==y[t]+Sqrt[t^2+y[t]^2]; 
ic=y[1]==0; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{2} \left (t^2-1\right ) \]
Sympy. Time used: 1.133 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) - sqrt(t**2 + y(t)**2) - y(t),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t \sinh {\left (\log {\left (t \right )} \right )} \]