14.23.1 problem 1

Internal problem ID [2740]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number : 1
Date solved : Monday, January 27, 2025 at 06:12:34 AM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=-3 x_{1} \left (t \right )+2 x_{2} \left (t \right )\\ x_{2}^{\prime }\left (t \right )&=-x_{1} \left (t \right )-x_{2} \left (t \right ) \end{align*}

Solution by Maple

Time used: 1.127 (sec). Leaf size: 45

dsolve([diff(x__1(t),t)=-3*x__1(t)+2*x__2(t),diff(x__2(t),t)=-1*x__1(t)-1*x__2(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{-2 t} \left (c_1 \sin \left (t \right )+c_2 \cos \left (t \right )\right ) \\ x_{2} \left (t \right ) &= \frac {{\mathrm e}^{-2 t} \left (\cos \left (t \right ) c_1 +c_2 \cos \left (t \right )+c_1 \sin \left (t \right )-\sin \left (t \right ) c_2 \right )}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 53

DSolve[{D[ x1[t],t]==-3*x1[t]+2*x2[t],D[ x2[t],t]==-1*x1[t]-1*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to e^{-2 t} (c_1 \cos (t)-(c_1-2 c_2) \sin (t)) \\ \text {x2}(t)\to e^{-2 t} (c_2 \cos (t)+(c_2-c_1) \sin (t)) \\ \end{align*}