14.23.8 problem 8

Internal problem ID [2747]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number : 8
Date solved : Monday, January 27, 2025 at 06:12:41 AM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=2 x_{2} \left (t \right )\\ x_{2}^{\prime }\left (t \right )&=-2 x_{1} \left (t \right )\\ x_{3}^{\prime }\left (t \right )&=-3 x_{4} \left (t \right )\\ x_{4}^{\prime }\left (t \right )&=3 x_{3} \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = 1\\ x_{2} \left (0\right ) = 1\\ x_{3} \left (0\right ) = 1\\ x_{4} \left (0\right ) = 0 \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 41

dsolve([diff(x__1(t),t) = 2*x__2(t), diff(x__2(t),t) = -2*x__1(t), diff(x__3(t),t) = -3*x__4(t), diff(x__4(t),t) = 3*x__3(t), x__1(0) = 1, x__2(0) = 1, x__3(0) = 1, x__4(0) = 0], singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= \sin \left (2 t \right )+\cos \left (2 t \right ) \\ x_{2} \left (t \right ) &= \cos \left (2 t \right )-\sin \left (2 t \right ) \\ x_{3} \left (t \right ) &= \cos \left (3 t \right ) \\ x_{4} \left (t \right ) &= \sin \left (3 t \right ) \\ \end{align*}

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 42

DSolve[{D[ x1[t],t]==-0*x1[t]+2*x2[t]+0*x3[t]+0*x4[t],D[ x2[t],t]==-2*x1[t]-0*x2[t]-0*x3[t]+0*x4[t],D[ x3[t],t]==0*x1[t]-0*x2[t]-0*x3[t]-3*x4[t],D[ x4[t],t]==0*x1[t]-0*x2[t]+3*x3[t]-0*x4[t]},{x1[0]==1,x2[0]==1,x3[0]==1,x4[0]==0},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \sin (2 t)+\cos (2 t) \\ \text {x2}(t)\to \cos (2 t)-\sin (2 t) \\ \text {x3}(t)\to \cos (3 t) \\ \text {x4}(t)\to \sin (3 t) \\ \end{align*}