Internal
problem
ID
[2373]
Book
:
Differential
equations
and
their
applications,
3rd
ed.,
M.
Braun
Section
:
Section
2.2,
linear
equations
with
constant
coefficients.
Page
138
Problem
number
:
10
Date
solved
:
Tuesday, March 04, 2025 at 02:08:33 PM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=t^2*diff(diff(y(t),t),t)+alpha*t*diff(y(t),t)+beta*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+\[Alpha]*t*D[y[t],t]+\[Beta]*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") Alpha = symbols("Alpha") BETA = symbols("BETA") y = Function("y") ode = Eq(Alpha*t*Derivative(y(t), t) + BETA*y(t) + t**2*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)