14.26.4 problem 4

Internal problem ID [2777]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 3. Systems of differential equations. Section 3.13 (Solving systems by Laplace transform). Page 370
Problem number : 4
Date solved : Monday, January 27, 2025 at 06:13:12 AM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{t}\\ x_{2}^{\prime }\left (t \right )&=4 x_{1} \left (t \right )+x_{2} \left (t \right )-{\mathrm e}^{t} \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = 0\\ x_{2} \left (0\right ) = 0 \end{align*}

Solution by Maple

Time used: 0.029 (sec). Leaf size: 41

dsolve([diff(x__1(t),t) = x__1(t)+x__2(t)+2*exp(t), diff(x__2(t),t) = 4*x__1(t)+x__2(t)-exp(t), x__1(0) = 0, x__2(0) = 0], singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= \frac {3 \,{\mathrm e}^{3 t}}{8}-\frac {5 \,{\mathrm e}^{-t}}{8}+\frac {{\mathrm e}^{t}}{4} \\ x_{2} \left (t \right ) &= \frac {3 \,{\mathrm e}^{3 t}}{4}+\frac {5 \,{\mathrm e}^{-t}}{4}-2 \,{\mathrm e}^{t} \\ \end{align*}

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 57

DSolve[{D[x1[t],t]==1*x1[t]+1*x2[t]+2*Exp[t],D[ x2[t],t]==4*x1[t]+1*x2[t]-Exp[t]},{x1[0]==0,x2[0]==0},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{8} e^{-t} \left (2 e^{2 t}+3 e^{4 t}-5\right ) \\ \text {x2}(t)\to \frac {5 e^{-t}}{4}-2 e^t+\frac {3 e^{3 t}}{4} \\ \end{align*}