Internal
problem
ID
[2399]
Book
:
Differential
equations
and
their
applications,
3rd
ed.,
M.
Braun
Section
:
Section
2.2.2,
Equal
roots,
reduction
of
order.
Page
147
Problem
number
:
16
Date
solved
:
Tuesday, March 04, 2025 at 02:09:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)+(t^2-1/4)*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+t*D[y[t],t]+(t^2-1/4)*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) + (t**2 - 1/4)*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)