14.28.4 problem 8

Internal problem ID [2796]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.1 (Introduction). Page 377
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 02:38:53 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }\left (t \right )&=x \left (t \right )-y^{2}\\ y^{\prime }&=x \left (t \right )^{2}-y\\ z^{\prime }\left (t \right )&={\mathrm e}^{z \left (t \right )}-x \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.679 (sec). Leaf size: 568

dsolve([diff(x(t),t)=x(t)-y(t)^2,diff(y(t),t)=x(t)^2-y(t),diff(z(t),t)=exp(z(t))-x(t)],singsol=all)
 
\begin{align*} \left \{y &= \operatorname {RootOf}\left (-4 \left (\int _{}^{\textit {\_Z}}\frac {\left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{2}/{3}}}{\left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{4}/{3}}+4 \textit {\_f} \left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{2}/{3}}+16 \textit {\_f}^{2}}d \textit {\_f} \right )+t +c_3 \right ), y = \operatorname {RootOf}\left (-8 \left (\int _{}^{\textit {\_Z}}\frac {\left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{2}/{3}}}{i \left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{4}/{3}} \sqrt {3}-\left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{4}/{3}}-16 i \sqrt {3}\, \textit {\_f}^{2}+8 \textit {\_f} \left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{2}/{3}}-16 \textit {\_f}^{2}}d \textit {\_f} \right )+t +c_3 \right ), y = \operatorname {RootOf}\left (8 \left (\int _{}^{\textit {\_Z}}\frac {\left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{2}/{3}}}{i \left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{4}/{3}} \sqrt {3}+\left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{4}/{3}}-16 i \sqrt {3}\, \textit {\_f}^{2}-8 \textit {\_f} \left (-4 \textit {\_f}^{3}+6 c_2 +2 \sqrt {4 \textit {\_f}^{6}-12 c_2 \,\textit {\_f}^{3}-16 \textit {\_f}^{3}+9 c_2^{2}}\right )^{{2}/{3}}+16 \textit {\_f}^{2}}d \textit {\_f} \right )+t +c_3 \right )\right \} \\ \left \{x \left (t \right ) &= \sqrt {y^{\prime }+y}, x \left (t \right ) = -\sqrt {y^{\prime }+y}\right \} \\ \{z \left (t \right ) &= -\int x \left (t \right )d t -\ln \left (-c_1 -\int {\mathrm e}^{\int -x \left (t \right )d t}d t \right )\} \\ \end{align*}

Solution by Mathematica

Time used: 23.461 (sec). Leaf size: 20958

DSolve[{D[x[t],t]==x[t]-y[t]^2,D[y[t],t]==x[t]^2-y[t],D[z[t],t]==Exp[z[t]]-x[t]},{x[t],y[t],z[t]},t,IncludeSingularSolutions -> True]
 

Too large to display