14.30.3 problem 3

Internal problem ID [2816]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.3 (Stability of equilibrium solutions). Page 393
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 02:38:54 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=x^{2}+y \left (t \right )^{2}-1\\ y^{\prime }\left (t \right )&=2 x y \left (t \right ) \end{align*}

Solution by Maple

Time used: 1.504 (sec). Leaf size: 257

dsolve([diff(x(t),t)=x(t)^2+y(t)^2-1,diff(y(t),t)=2*x(t)*y(t)],singsol=all)
 
\begin{align*} \\ \left [\left \{y &= \frac {c_1 \,{\mathrm e}^{-2 t}}{4}, y = \frac {c_1 \,{\mathrm e}^{-2 t} \left (-\frac {8 c_2 \,c_1^{2} \left ({\mathrm e}^{-2 t}+2 c_2 \right )}{c_1^{2} {\mathrm e}^{-4 t}+4 \,{\mathrm e}^{-2 t} c_1^{2} c_2 +4 c_1^{2} c_2^{2}-64}-\frac {4 \,{\mathrm e}^{-2 t} c_1^{2} \left ({\mathrm e}^{-2 t}+2 c_2 \right )}{c_1^{2} {\mathrm e}^{-4 t}+4 \,{\mathrm e}^{-2 t} c_1^{2} c_2 +4 c_1^{2} c_2^{2}-64}+4\right )}{16}, y = -\frac {c_1 \,{\mathrm e}^{-2 t} \left (\frac {8 c_2 \,c_1^{2} \left ({\mathrm e}^{-2 t}+2 c_2 \right )}{c_1^{2} {\mathrm e}^{-4 t}+4 \,{\mathrm e}^{-2 t} c_1^{2} c_2 +4 c_1^{2} c_2^{2}-64}+\frac {4 \,{\mathrm e}^{-2 t} c_1^{2} \left ({\mathrm e}^{-2 t}+2 c_2 \right )}{c_1^{2} {\mathrm e}^{-4 t}+4 \,{\mathrm e}^{-2 t} c_1^{2} c_2 +4 c_1^{2} c_2^{2}-64}-4\right )}{16}\right \}, \left \{x \left (t \right ) = \frac {y^{\prime }}{2 y}\right \}\right ] \\ \end{align*}

Solution by Mathematica

Time used: 0.254 (sec). Leaf size: 1239

DSolve[{D[x[t],t]==x[t]^2+y[t]^2-1,D[y[t],t]==2*x[t]*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} y(t)\to \frac {1}{2} \left (c_1-\sqrt {\frac {\left (\left (-4+c_1{}^2\right ) \cosh (8 (t+2 c_2))+\left (-4+c_1{}^2\right ) \sinh (8 (t+2 c_2))-4 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}+4-c_1{}^2\right ){}^2}{\left (-\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))+4+c_1{}^2\right ){}^2 (\cosh (4 (t+2 c_2))+\sinh (4 (t+2 c_2))){}^2}-4+c_1{}^2}\right ) \\ x(t)\to \frac {2 \cosh (4 (t+2 c_2)) \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}-\sinh (4 (t+2 c_2)) \left (2 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}-4+c_1{}^2\right )}{\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))-4-c_1{}^2} \\ y(t)\to \frac {1}{2} \left (\sqrt {\frac {\left (\left (-4+c_1{}^2\right ) \cosh (8 (t+2 c_2))+\left (-4+c_1{}^2\right ) \sinh (8 (t+2 c_2))-4 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}+4-c_1{}^2\right ){}^2}{\left (-\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))+4+c_1{}^2\right ){}^2 (\cosh (4 (t+2 c_2))+\sinh (4 (t+2 c_2))){}^2}-4+c_1{}^2}+c_1\right ) \\ x(t)\to \frac {2 \cosh (4 (t+2 c_2)) \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}-\sinh (4 (t+2 c_2)) \left (2 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}-4+c_1{}^2\right )}{\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))-4-c_1{}^2} \\ y(t)\to \frac {1}{2} \left (c_1-\sqrt {\frac {\left (\left (-4+c_1{}^2\right ) \cosh (8 (t+2 c_2))+\left (-4+c_1{}^2\right ) \sinh (8 (t+2 c_2))+4 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}+4-c_1{}^2\right ){}^2}{\left (-\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))+4+c_1{}^2\right ){}^2 (\cosh (4 (t+2 c_2))+\sinh (4 (t+2 c_2))){}^2}-4+c_1{}^2}\right ) \\ x(t)\to \frac {\sinh (4 (t+2 c_2)) \left (2 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}+4-c_1{}^2\right )-2 \cosh (4 (t+2 c_2)) \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}}{\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))-4-c_1{}^2} \\ y(t)\to \frac {1}{2} \left (\sqrt {\frac {\left (\left (-4+c_1{}^2\right ) \cosh (8 (t+2 c_2))+\left (-4+c_1{}^2\right ) \sinh (8 (t+2 c_2))+4 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}+4-c_1{}^2\right ){}^2}{\left (-\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))+4+c_1{}^2\right ){}^2 (\cosh (4 (t+2 c_2))+\sinh (4 (t+2 c_2))){}^2}-4+c_1{}^2}+c_1\right ) \\ x(t)\to \frac {\sinh (4 (t+2 c_2)) \left (2 \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}+4-c_1{}^2\right )-2 \cosh (4 (t+2 c_2)) \sqrt {c_1{}^2 \left (-4+c_1{}^2\right ) \sinh ^2(2 (t+2 c_2)) (\cosh (8 (t+2 c_2))+\sinh (8 (t+2 c_2)))}}{\left (-4+c_1{}^2\right ) \cosh (4 (t+2 c_2))-4-c_1{}^2} \\ \end{align*}