15.3.2 problem 2

Internal problem ID [2895]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 7, page 28
Problem number : 2
Date solved : Monday, January 27, 2025 at 06:27:45 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class C`], _dAlembert]

\begin{align*} x +\left (x -2 y+2\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.970 (sec). Leaf size: 149

dsolve(x+(x-2*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = -\frac {-2 \left (2 c_1 \,x^{3}+2 \sqrt {-2 \left (c_1 \,x^{3}-\frac {1}{2}\right ) c_1^{2} x^{6}}\right )^{{2}/{3}} c_1 \,x^{2}-\frac {\left (1+i \sqrt {3}\right ) \left (c_1 \,x^{3}+\sqrt {-2 \left (c_1 \,x^{3}-\frac {1}{2}\right ) c_1^{2} x^{6}}\right ) \left (2 c_1 \,x^{3}+2 \sqrt {-2 \left (c_1 \,x^{3}-\frac {1}{2}\right ) c_1^{2} x^{6}}\right )^{{1}/{3}}}{2}+x^{6} \left (i \sqrt {3}-1\right ) c_1^{2}}{2 \left (2 c_1 \,x^{3}+2 \sqrt {-2 \left (c_1 \,x^{3}-\frac {1}{2}\right ) c_1^{2} x^{6}}\right )^{{2}/{3}} x^{2} c_1} \]

Solution by Mathematica

Time used: 60.039 (sec). Leaf size: 445

DSolve[x+(x-2*y[x]+2)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x+2}{2}-\frac {1}{2 \text {Root}\left [\text {$\#$1}^6 \left (16 x^6+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^4+8 \text {$\#$1}^3 x^3+9 \text {$\#$1}^2 x^2-6 \text {$\#$1} x+1\&,1\right ]} \\ y(x)\to \frac {x+2}{2}-\frac {1}{2 \text {Root}\left [\text {$\#$1}^6 \left (16 x^6+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^4+8 \text {$\#$1}^3 x^3+9 \text {$\#$1}^2 x^2-6 \text {$\#$1} x+1\&,2\right ]} \\ y(x)\to \frac {x+2}{2}-\frac {1}{2 \text {Root}\left [\text {$\#$1}^6 \left (16 x^6+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^4+8 \text {$\#$1}^3 x^3+9 \text {$\#$1}^2 x^2-6 \text {$\#$1} x+1\&,3\right ]} \\ y(x)\to \frac {x+2}{2}-\frac {1}{2 \text {Root}\left [\text {$\#$1}^6 \left (16 x^6+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^4+8 \text {$\#$1}^3 x^3+9 \text {$\#$1}^2 x^2-6 \text {$\#$1} x+1\&,4\right ]} \\ y(x)\to \frac {x+2}{2}-\frac {1}{2 \text {Root}\left [\text {$\#$1}^6 \left (16 x^6+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^4+8 \text {$\#$1}^3 x^3+9 \text {$\#$1}^2 x^2-6 \text {$\#$1} x+1\&,5\right ]} \\ y(x)\to \frac {x+2}{2}-\frac {1}{2 \text {Root}\left [\text {$\#$1}^6 \left (16 x^6+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^4+8 \text {$\#$1}^3 x^3+9 \text {$\#$1}^2 x^2-6 \text {$\#$1} x+1\&,6\right ]} \\ \end{align*}