15.4.1 problem 1

Internal problem ID [2914]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 8, page 34
Problem number : 1
Date solved : Monday, January 27, 2025 at 06:55:28 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x +y+\left (x -2 y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.039 (sec). Leaf size: 51

dsolve((x+y(x))+(x-2*y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {c_1 x -\sqrt {3 c_1^{2} x^{2}+2}}{2 c_1} \\ y &= \frac {c_1 x +\sqrt {3 c_1^{2} x^{2}+2}}{2 c_1} \\ \end{align*}

Solution by Mathematica

Time used: 0.531 (sec). Leaf size: 106

DSolve[(x+y[x])+(x-2*y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{2} \left (x-\sqrt {3 x^2-2 e^{2 c_1}}\right ) \\ y(x)\to \frac {1}{2} \left (x+\sqrt {3 x^2-2 e^{2 c_1}}\right ) \\ y(x)\to \frac {1}{2} \left (x-\sqrt {3} \sqrt {x^2}\right ) \\ y(x)\to \frac {1}{2} \left (\sqrt {3} \sqrt {x^2}+x\right ) \\ \end{align*}