14.5.4 problem 4

Internal problem ID [2541]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 1. First order differential equations. Section 1.17. What to do in practice. Excercises page 126
Problem number : 4
Date solved : Tuesday, March 04, 2025 at 02:26:59 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Bernoulli]

\begin{align*} y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 8
ode:=diff(y(t),t) = exp(t)*y(t)^2-2*y(t); 
ic:=y(0) = 1; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = {\mathrm e}^{-t} \]
Mathematica. Time used: 0.227 (sec). Leaf size: 10
ode=D[y[t],t]==Exp[t]*y[t]^2-2*y[t]; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{-t} \]
Sympy. Time used: 0.231 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2*exp(t) + 2*y(t) + Derivative(y(t), t),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = e^{- t} \]