15.4.17 problem 18

Internal problem ID [2930]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 8, page 34
Problem number : 18
Date solved : Monday, January 27, 2025 at 06:57:53 AM
CAS classification : [_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.037 (sec). Leaf size: 18

dsolve(cos(y(x))-(x*sin(y(x))-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ x +\frac {\sec \left (y\right ) \left (y^{3}-3 c_1 \right )}{3} = 0 \]

Solution by Mathematica

Time used: 0.148 (sec). Leaf size: 23

DSolve[Cos[y[x]]-(x*Sin[y[x]]-y[x]^2)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x=-\frac {1}{3} y(x)^3 \sec (y(x))+c_1 \sec (y(x)),y(x)\right ] \]