14.8.8 problem 9

Internal problem ID [2563]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 2. Second order differential equations. Section 2.2.1 Linear equations with constant coefficients (complex roots). Excercises page 144
Problem number : 9
Date solved : Tuesday, March 04, 2025 at 02:27:55 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=1\\ y^{\prime }\left (2\right )&=-1 \end{align*}

Maple. Time used: 0.113 (sec). Leaf size: 70
ode:=3*diff(diff(y(t),t),t)-2*diff(y(t),t)+4*y(t) = 0; 
ic:=y(2) = 1, D(y)(2) = -1; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\frac {2}{3}+\frac {t}{3}} \left (\left (\sin \left (\frac {2 \sqrt {11}}{3}\right ) \sqrt {11}-4 \cos \left (\frac {2 \sqrt {11}}{3}\right )\right ) \sin \left (\frac {\sqrt {11}\, t}{3}\right )+\left (\cos \left (\frac {2 \sqrt {11}}{3}\right ) \sqrt {11}+4 \sin \left (\frac {2 \sqrt {11}}{3}\right )\right ) \cos \left (\frac {\sqrt {11}\, t}{3}\right )\right ) \sqrt {11}}{11} \]
Mathematica. Time used: 0.032 (sec). Leaf size: 54
ode=3*D[y[t],{t,2}]-2*D[y[t],t]+4*y[t]==0; 
ic={y[2]==1,Derivative[1][y][2] ==-1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{11} e^{\frac {t-2}{3}} \left (11 \cos \left (\frac {1}{3} \sqrt {11} (t-2)\right )-4 \sqrt {11} \sin \left (\frac {1}{3} \sqrt {11} (t-2)\right )\right ) \]
Sympy. Time used: 0.280 (sec). Leaf size: 235
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) - 2*Derivative(y(t), t) + 3*Derivative(y(t), (t, 2)),0) 
ics = {y(2): 1, Subs(Derivative(y(t), t), t, 2): -1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\left (- \frac {4 \sqrt {11} \cos {\left (\frac {2 \sqrt {11}}{3} \right )}}{11 e^{\frac {2}{3}} \cos ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )} + 11 e^{\frac {2}{3}} \sin ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )}} + \frac {11 \sin {\left (\frac {2 \sqrt {11}}{3} \right )}}{11 e^{\frac {2}{3}} \cos ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )} + 11 e^{\frac {2}{3}} \sin ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )}}\right ) \sin {\left (\frac {\sqrt {11} t}{3} \right )} + \left (\frac {11 \cos {\left (\frac {2 \sqrt {11}}{3} \right )}}{11 e^{\frac {2}{3}} \cos ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )} + 11 e^{\frac {2}{3}} \sin ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )}} + \frac {4 \sqrt {11} \sin {\left (\frac {2 \sqrt {11}}{3} \right )}}{11 e^{\frac {2}{3}} \cos ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )} + 11 e^{\frac {2}{3}} \sin ^{2}{\left (\frac {2 \sqrt {11}}{3} \right )}}\right ) \cos {\left (\frac {\sqrt {11} t}{3} \right )}\right ) e^{\frac {t}{3}} \]