14.8.10 problem 18

Internal problem ID [2565]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 2. Second order differential equations. Section 2.2.1 Linear equations with constant coefficients (complex roots). Excercises page 144
Problem number : 18
Date solved : Tuesday, March 04, 2025 at 02:28:02 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \sin \left (\ln \left (t \right )\right )+c_2 \cos \left (\ln \left (t \right )\right ) \]
Mathematica. Time used: 0.019 (sec). Leaf size: 18
ode=t^2*D[y[t],{t,2}]+t*D[y[t],t]+y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to c_1 \cos (\log (t))+c_2 \sin (\log (t)) \]
Sympy. Time used: 0.170 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) + y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} \sin {\left (\log {\left (t \right )} \right )} + C_{2} \cos {\left (\log {\left (t \right )} \right )} \]