15.5.14 problem 14

Internal problem ID [2950]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 9, page 38
Problem number : 14
Date solved : Monday, January 27, 2025 at 07:00:18 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.011 (sec). Leaf size: 376

dsolve((2*x+3*x^2*y(x))*diff(y(x),x)+(y(x)+2*y(x)^2*x)=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {2 c_1^{2} 2^{{1}/{3}}-2 c_1 \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}}+2^{{2}/{3}} \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{2}/{3}}}{6 c_1 x \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}}} \\ y &= \frac {2 \left (i \sqrt {3}-1\right ) c_1^{2} 2^{{1}/{3}}-\left (\left (1+i \sqrt {3}\right ) \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} 2^{{2}/{3}}+4 c_1 \right ) \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}}}{12 \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} x c_1} \\ y &= \frac {-2 \left (1+i \sqrt {3}\right ) c_1^{2} 2^{{1}/{3}}+\left (\left (i \sqrt {3}-1\right ) \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} 2^{{2}/{3}}-4 c_1 \right ) \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}}}{12 \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} x c_1} \\ \end{align*}

Solution by Mathematica

Time used: 31.110 (sec). Leaf size: 380

DSolve[(2*x+3*x^2*y[x])*D[y[x],x]+(y[x]+2*y[x]^2*x)==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{6} \left (\frac {2}{\sqrt [3]{\frac {3}{2} \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+\frac {27 c_1 x^4}{2}-x^3}}+\frac {2^{2/3} \sqrt [3]{3 \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+27 c_1 x^4-2 x^3}}{x^2}-\frac {2}{x}\right ) \\ y(x)\to \frac {1}{12} \left (-\frac {2 \left (1+i \sqrt {3}\right )}{\sqrt [3]{\frac {3}{2} \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+\frac {27 c_1 x^4}{2}-x^3}}+\frac {i 2^{2/3} \left (\sqrt {3}+i\right ) \sqrt [3]{3 \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+27 c_1 x^4-2 x^3}}{x^2}-\frac {4}{x}\right ) \\ y(x)\to \frac {1}{12} \left (\frac {2 i \left (\sqrt {3}+i\right )}{\sqrt [3]{\frac {3}{2} \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+\frac {27 c_1 x^4}{2}-x^3}}-\frac {2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{3 \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+27 c_1 x^4-2 x^3}}{x^2}-\frac {4}{x}\right ) \\ \end{align*}