15.7.15 problem 15

Internal problem ID [2996]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 11, page 45
Problem number : 15
Date solved : Monday, January 27, 2025 at 07:06:17 AM
CAS classification : [_separable]

\begin{align*} \cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right )&=0 \end{align*}

Solution by Maple

Time used: 0.137 (sec). Leaf size: 16

dsolve(cos(y(x))*diff(y(x),x)+(sin(y(x))-1)*cos(x)=0,y(x), singsol=all)
 
\[ y = \arcsin \left (\frac {{\mathrm e}^{-\sin \left (x \right )}+c_{1}}{c_{1}}\right ) \]

Solution by Mathematica

Time used: 60.341 (sec). Leaf size: 225

DSolve[Cos[y[x]]*D[y[x],x]+(Sin[y[x]]-1)*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {3 \pi }{2} \\ y(x)\to \frac {\pi }{2} \\ y(x)\to -2 \arccos \left (-\frac {1}{8} e^{-\sin (x)} \left (c_1 e^{\frac {\sin (x)}{2}}+\sqrt {e^{\sin (x)} \left (32 e^{\sin (x)}-c_1{}^2\right )}\right )\right ) \\ y(x)\to 2 \arccos \left (-\frac {1}{8} e^{-\sin (x)} \left (c_1 e^{\frac {\sin (x)}{2}}+\sqrt {e^{\sin (x)} \left (32 e^{\sin (x)}-c_1{}^2\right )}\right )\right ) \\ y(x)\to -2 \arccos \left (\frac {1}{8} e^{-\sin (x)} \left (\sqrt {e^{\sin (x)} \left (32 e^{\sin (x)}-c_1{}^2\right )}-c_1 e^{\frac {\sin (x)}{2}}\right )\right ) \\ y(x)\to 2 \arccos \left (\frac {1}{8} e^{-\sin (x)} \left (\sqrt {e^{\sin (x)} \left (32 e^{\sin (x)}-c_1{}^2\right )}-c_1 e^{\frac {\sin (x)}{2}}\right )\right ) \\ \end{align*}