15.8.5 problem 5

Internal problem ID [3008]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 12, page 46
Problem number : 5
Date solved : Monday, January 27, 2025 at 07:07:38 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x -2 y+1+\left (y-2\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.290 (sec). Leaf size: 28

dsolve((x-2*y(x)+1)+(y(x)-2)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \frac {\left (x -1\right ) \operatorname {LambertW}\left (-c_{1} \left (x -3\right )\right )+x -3}{\operatorname {LambertW}\left (-c_{1} \left (x -3\right )\right )} \]

Solution by Mathematica

Time used: 0.880 (sec). Leaf size: 135

DSolve[(x-2*y[x]+1)+(y[x]-2)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {2^{2/3} \left (x \log \left (\frac {x-3}{y(x)-2}\right )-\log \left (\frac {3 (x-3)}{y(x)-2}\right )-x \log \left (\frac {y(x)-x+1}{y(x)-2}\right )+\log \left (\frac {y(x)-x+1}{y(x)-2}\right )+y(x) \left (-\log \left (\frac {x-3}{y(x)-2}\right )+\log \left (\frac {y(x)-x+1}{y(x)-2}\right )-1\right )+2+\log (3)\right )}{9 (-y(x)+x-1)}=\frac {1}{9} 2^{2/3} \log (x-3)+c_1,y(x)\right ] \]