Internal
problem
ID
[3019]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
12,
page
46
Problem
number
:
16
Date
solved
:
Monday, January 27, 2025 at 07:08:52 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
Time used: 0.006 (sec). Leaf size: 16
Time used: 60.085 (sec). Leaf size: 1509
\begin{align*}
y(x)\to -\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}-\frac {1}{2} \sqrt {2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}-\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}}}+\frac {x}{2} \\
y(x)\to -\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}+\frac {1}{2} \sqrt {2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}-\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}}}+\frac {x}{2} \\
y(x)\to \frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}-\frac {1}{2} \sqrt {2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}+\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}}}+\frac {x}{2} \\
y(x)\to \frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}+\frac {1}{2} \sqrt {2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}+\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}+9 e^{2 c_1} x^2}}}}}+\frac {x}{2} \\
\end{align*}