Internal
problem
ID
[2707]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.14,
The
method
of
elimination
for
systems.
Excercises
page
258
Problem
number
:
10
Date
solved
:
Tuesday, March 04, 2025 at 02:40:05 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 3*x(t)-4*y(t)+exp(t), diff(y(t),t) = x(t)-y(t)+exp(t)]; ic:=x(0) = 1y(0) = 1; dsolve([ode,ic]);
ode={D[x[t],t]==3*x[t]-4*y[t]+Exp[t],D[y[t],t]==x[t]-y[t]+Exp[t]}; ic={x[0]==1,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-3*x(t) + 4*y(t) - exp(t) + Derivative(x(t), t),0),Eq(-x(t) + y(t) - exp(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)