Internal
problem
ID
[2734]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.8,
Systems
of
differential
equations.
The
eigenva1ue-eigenvector
method.
Page
339
Problem
number
:
7
Date
solved
:
Tuesday, March 04, 2025 at 02:40:32 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = x__1(t)+x__2(t), diff(x__2(t),t) = 4*x__1(t)+x__2(t)]; ic:=x__1(0) = 2x__2(0) = 3; dsolve([ode,ic]);
ode={D[ x1[t],t]==1*x1[t]+1*x2[t],D[ x2[t],t]==4*x1[t]+1*x2[t]}; ic={x1[0]==2,x2[0]==3}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-x__1(t) - x__2(t) + Derivative(x__1(t), t),0),Eq(-4*x__1(t) - x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)