14.25.5 problem 3

Internal problem ID [2762]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Section 3.12, Systems of differential equations. The nonhomogeneous equation. variation of parameters. Page 366
Problem number : 3
Date solved : Tuesday, March 04, 2025 at 02:41:05 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=2 x_{1} \left (t \right )-5 x_{2} \left (t \right )+\sin \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-2 x_{2} \left (t \right )+\tan \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = 0\\ x_{2} \left (0\right ) = 0 \end{align*}

Maple. Time used: 0.068 (sec). Leaf size: 148
ode:=[diff(x__1(t),t) = 2*x__1(t)-5*x__2(t)+sin(t), diff(x__2(t),t) = x__1(t)-2*x__2(t)+tan(t)]; 
ic:=x__1(0) = 0x__2(0) = 0; 
dsolve([ode,ic]);
 
\begin{align*} x_{1} \left (t \right ) &= -4 \sin \left (t \right )+\frac {\sin \left (t \right ) t}{2}+5 \cos \left (t \right ) \ln \left (\sec \left (t \right )+\tan \left (t \right )\right )-\cos \left (t \right ) t \\ x_{2} \left (t \right ) &= -\frac {10 \tan \left (t \right ) \sec \left (t \right ) \cos \left (t \right )-10 \sin \left (t \right ) \ln \left (\sec \left (t \right )+\tan \left (t \right )\right ) \sec \left (t \right )-20 \cos \left (t \right ) \ln \left (\sec \left (t \right )+\tan \left (t \right )\right ) \sec \left (t \right )+15 \sin \left (t \right ) \sec \left (t \right )-10 \cos \left (t \right ) \sec \left (t \right )+5 \cos \left (t \right ) t \sec \left (t \right )+10 \tan \left (t \right )^{2} \cos \left (t \right )-10 \sin \left (t \right ) \ln \left (\sec \left (t \right )+\tan \left (t \right )\right ) \tan \left (t \right )-20 \cos \left (t \right ) \ln \left (\sec \left (t \right )+\tan \left (t \right )\right ) \tan \left (t \right )+15 \sin \left (t \right ) \tan \left (t \right )-10 \cos \left (t \right ) \tan \left (t \right )+5 \cos \left (t \right ) t \tan \left (t \right )+10 \cos \left (t \right )}{10 \left (\sec \left (t \right )+\tan \left (t \right )\right )} \\ \end{align*}
Mathematica. Time used: 0.021 (sec). Leaf size: 58
ode={D[ x1[t],t]==2*x1[t]-5*x2[t]+Sin[t],D[ x2[t],t]==1*x1[t]-2*x2[t]+Tan[t]}; 
ic={x1[0]==0,x2[0]==0}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to 5 \cos (t) \text {arctanh}(\sin (t))+\frac {1}{2} (t-8) \sin (t)-t \cos (t) \\ \text {x2}(t)\to \text {arctanh}(\sin (t)) (\sin (t)+2 \cos (t))-\frac {3 \sin (t)}{2}-\frac {1}{2} t \cos (t)+\cos (t)-1 \\ \end{align*}
Sympy. Time used: 0.213 (sec). Leaf size: 162
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-2*x__1(t) + 5*x__2(t) - sin(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 2*x__2(t) - tan(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = \frac {t \sin {\left (t \right )}}{2} - t \cos {\left (t \right )} - \left (C_{1} - 2 C_{2}\right ) \cos {\left (t \right )} - \left (2 C_{1} + C_{2}\right ) \sin {\left (t \right )} - \frac {5 \log {\left (\sin {\left (t \right )} - 1 \right )} \cos {\left (t \right )}}{2} + \frac {5 \log {\left (\sin {\left (t \right )} + 1 \right )} \cos {\left (t \right )}}{2} + \sin ^{3}{\left (t \right )} + \sin {\left (t \right )} \cos ^{2}{\left (t \right )}, \ x^{2}{\left (t \right )} = - C_{1} \sin {\left (t \right )} + C_{2} \cos {\left (t \right )} - \frac {t \cos {\left (t \right )}}{2} - \frac {\log {\left (\sin {\left (t \right )} - 1 \right )} \sin {\left (t \right )}}{2} - \log {\left (\sin {\left (t \right )} - 1 \right )} \cos {\left (t \right )} + \frac {\log {\left (\sin {\left (t \right )} + 1 \right )} \sin {\left (t \right )}}{2} + \log {\left (\sin {\left (t \right )} + 1 \right )} \cos {\left (t \right )} + \frac {\sin ^{3}{\left (t \right )}}{2} - \sin ^{2}{\left (t \right )} + \frac {\sin {\left (t \right )} \cos ^{2}{\left (t \right )}}{2} - \cos ^{2}{\left (t \right )}\right ] \]