14.25.11 problem 12
Internal
problem
ID
[2768]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.12,
Systems
of
differential
equations.
The
nonhomogeneous
equation.
variation
of
parameters.
Page
366
Problem
number
:
12
Date
solved
:
Tuesday, March 04, 2025 at 02:41:13 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )+3 x_{2} \left (t \right )+2 x_{3} \left (t \right )+\sin \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=4 x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right ) \end{align*}
✓ Maple. Time used: 0.174 (sec). Leaf size: 82
ode:=[diff(x__1(t),t) = x__1(t)+3*x__2(t)+2*x__3(t)+sin(t), diff(x__2(t),t) = -x__1(t)+2*x__2(t)+x__3(t), diff(x__3(t),t) = 4*x__1(t)-x__2(t)-x__3(t)];
dsolve(ode);
\begin{align*}
x_{1} \left (t \right ) &= -\frac {\sin \left (t \right )}{10}-\frac {\cos \left (t \right )}{5}-\frac {c_3 \,{\mathrm e}^{t}}{2}+c_1 \,{\mathrm e}^{3 t}+{\mathrm e}^{-2 t} c_2 \\
x_{2} \left (t \right ) &= c_3 \,{\mathrm e}^{t}+{\mathrm e}^{-2 t} c_2 +\frac {\cos \left (t \right )}{10}+\frac {3 \sin \left (t \right )}{10} \\
x_{3} \left (t \right ) &= -\frac {4 \sin \left (t \right )}{5}-\frac {\cos \left (t \right )}{10}+c_1 \,{\mathrm e}^{3 t}-\frac {3 c_3 \,{\mathrm e}^{t}}{2}-3 \,{\mathrm e}^{-2 t} c_2 \\
\end{align*}
✓ Mathematica. Time used: 0.262 (sec). Leaf size: 211
ode={D[ x1[t],t]==1*x1[t]+3*x2[t]+2*x3[t]+Sin[t],D[ x2[t],t]==-1*x1[t]+2*x2[t]+1*x3[t],D[ x3[t],t]==4*x1[t]-1*x2[t]-1*x3[t]};
ic={};
DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {x1}(t)\to \frac {1}{30} \left (-3 \sin (t)-6 \cos (t)+5 e^{-2 t} \left (c_1 \left (e^{3 t}+3 e^{5 t}+2\right )+c_2 \left (-4 e^{3 t}+6 e^{5 t}-2\right )+c_3 \left (-e^{3 t}+3 e^{5 t}-2\right )\right )\right ) \\
\text {x2}(t)\to \frac {1}{30} \left (9 \sin (t)+3 \cos (t)-10 e^{-2 t} \left (c_1 \left (e^{3 t}-1\right )-4 c_2 e^{3 t}-c_3 e^{3 t}+c_2+c_3\right )\right ) \\
\text {x3}(t)\to \frac {1}{10} \left (-8 \sin (t)-\cos (t)+5 e^{-2 t} \left (c_1 \left (e^{3 t}+e^{5 t}-2\right )+2 c_2 \left (-2 e^{3 t}+e^{5 t}+1\right )+c_3 \left (-e^{3 t}+e^{5 t}+2\right )\right )\right ) \\
\end{align*}
✓ Sympy. Time used: 0.409 (sec). Leaf size: 97
from sympy import *
t = symbols("t")
x__1 = Function("x__1")
x__2 = Function("x__2")
x__3 = Function("x__3")
ode=[Eq(-x__1(t) - 3*x__2(t) - 2*x__3(t) - sin(t) + Derivative(x__1(t), t),0),Eq(x__1(t) - 2*x__2(t) - x__3(t) + Derivative(x__2(t), t),0),Eq(-4*x__1(t) + x__2(t) + x__3(t) + Derivative(x__3(t), t),0)]
ics = {}
dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
\[
\left [ x^{1}{\left (t \right )} = - \frac {C_{1} e^{- 2 t}}{3} + \frac {C_{2} e^{t}}{3} + C_{3} e^{3 t} - \frac {\sin {\left (t \right )}}{10} - \frac {\cos {\left (t \right )}}{5}, \ x^{2}{\left (t \right )} = - \frac {C_{1} e^{- 2 t}}{3} - \frac {2 C_{2} e^{t}}{3} + \frac {3 \sin {\left (t \right )}}{10} + \frac {\cos {\left (t \right )}}{10}, \ x^{3}{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{t} + C_{3} e^{3 t} - \frac {4 \sin {\left (t \right )}}{5} - \frac {\cos {\left (t \right )}}{10}\right ]
\]