14.26.8 problem 8

Internal problem ID [2781]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 3. Systems of differential equations. Section 3.13 (Solving systems by Laplace transform). Page 370
Problem number : 8
Date solved : Tuesday, March 04, 2025 at 02:42:33 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{2} \left (t \right )+f_{1} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-x_{1} \left (t \right )+f_{2} \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = 0\\ x_{2} \left (0\right ) = 0 \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 100
ode:=[diff(x__1(t),t) = x__2(t)+f__1(t), diff(x__2(t),t) = -x__1(t)+f__2(t)]; 
ic:=x__1(0) = 0x__2(0) = 0; 
dsolve([ode,ic]);
 
\begin{align*} x_{1} \left (t \right ) &= \sin \left (t \right ) f_{1} \left (0\right )+\left (\int _{0}^{t}\cos \left (\textit {\_z1} \right ) \left (\frac {d}{d \textit {\_z1}}f_{1} \left (\textit {\_z1} \right )+f_{2} \left (\textit {\_z1} \right )\right )d \textit {\_z1} \right ) \sin \left (t \right )-\left (\int _{0}^{t}\sin \left (\textit {\_z1} \right ) \left (\frac {d}{d \textit {\_z1}}f_{1} \left (\textit {\_z1} \right )+f_{2} \left (\textit {\_z1} \right )\right )d \textit {\_z1} \right ) \cos \left (t \right ) \\ x_{2} \left (t \right ) &= f_{1} \left (0\right ) \cos \left (t \right )+\left (\int _{0}^{t}\cos \left (\textit {\_z1} \right ) \left (\frac {d}{d \textit {\_z1}}f_{1} \left (\textit {\_z1} \right )+f_{2} \left (\textit {\_z1} \right )\right )d \textit {\_z1} \right ) \cos \left (t \right )+\left (\int _{0}^{t}\sin \left (\textit {\_z1} \right ) \left (\frac {d}{d \textit {\_z1}}f_{1} \left (\textit {\_z1} \right )+f_{2} \left (\textit {\_z1} \right )\right )d \textit {\_z1} \right ) \sin \left (t \right )-f_{1} \left (t \right ) \\ \end{align*}
Mathematica. Time used: 0.014 (sec). Leaf size: 216
ode={D[x1[t],t]==0*x1[t]+1*x2[t]+f1[t],D[x2[t],t]==-1*x1[t]-0*x2[t]+f2[t]}; 
ic={x1[0]==0,x2[0]==0}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to -\cos (t) \int _1^0(\cos (K[1]) \text {f1}(K[1])-\text {f2}(K[1]) \sin (K[1]))dK[1]+\cos (t) \int _1^t(\cos (K[1]) \text {f1}(K[1])-\text {f2}(K[1]) \sin (K[1]))dK[1]+\sin (t) \left (\int _1^t(\cos (K[2]) \text {f2}(K[2])+\text {f1}(K[2]) \sin (K[2]))dK[2]-\int _1^0(\cos (K[2]) \text {f2}(K[2])+\text {f1}(K[2]) \sin (K[2]))dK[2]\right ) \\ \text {x2}(t)\to \sin (t) \int _1^0(\cos (K[1]) \text {f1}(K[1])-\text {f2}(K[1]) \sin (K[1]))dK[1]-\sin (t) \int _1^t(\cos (K[1]) \text {f1}(K[1])-\text {f2}(K[1]) \sin (K[1]))dK[1]+\cos (t) \left (\int _1^t(\cos (K[2]) \text {f2}(K[2])+\text {f1}(K[2]) \sin (K[2]))dK[2]-\int _1^0(\cos (K[2]) \text {f2}(K[2])+\text {f1}(K[2]) \sin (K[2]))dK[2]\right ) \\ \end{align*}
Sympy. Time used: 0.376 (sec). Leaf size: 99
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-f__1(t) - x__2(t) + Derivative(x__1(t), t),0),Eq(-f__2(t) + x__1(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = C_{1} \sin {\left (t \right )} + C_{2} \cos {\left (t \right )} + \sin {\left (t \right )} \int \left (f^{1}{\left (t \right )} \sin {\left (t \right )} + f^{2}{\left (t \right )} \cos {\left (t \right )}\right )\, dt + \cos {\left (t \right )} \int \left (f^{1}{\left (t \right )} \cos {\left (t \right )} - f^{2}{\left (t \right )} \sin {\left (t \right )}\right )\, dt, \ x^{2}{\left (t \right )} = C_{1} \cos {\left (t \right )} - C_{2} \sin {\left (t \right )} - \sin {\left (t \right )} \int \left (f^{1}{\left (t \right )} \cos {\left (t \right )} - f^{2}{\left (t \right )} \sin {\left (t \right )}\right )\, dt + \cos {\left (t \right )} \int \left (f^{1}{\left (t \right )} \sin {\left (t \right )} + f^{2}{\left (t \right )} \cos {\left (t \right )}\right )\, dt\right ] \]