Internal
problem
ID
[2793]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.1
(Introduction).
Page
377
Problem
number
:
5
Date
solved
:
Friday, March 14, 2025 at 01:26:44 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)*y(t)^2-x(t), diff(y(t),t) = x(t)*sin(Pi*y(t))]; dsolve(ode);
ode={D[x[t],t]==x[t]*y[t]^2-x[t],D[y[t],t]==x[t]*Sin[Pi*y[t]]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t)*y(t)**2 + x(t) + Derivative(x(t), t),0),Eq(-x(t)*sin(pi*y(t)) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
NotImplementedError : multiple generators [log(4*C1**6/(C1**7 - 11*C1**5 + 19*C1**3 - 9*C1) + 4*C1**4/(C1**7 - 11*C1**5 + 19*C1**3 - 9*C1) + 6*C1**4/(C1**5 - 10*C1**3 + 9*C1) - 20*C1**2/(C1**7 - 11*C1**5 + 19*C1**3 - 9*C1) - 12*C1**2/(C1**5 - 10*C1**3 + 9*C1) - 10*C1**2/(C1**3 - 9*C1) + u + 12/(C1**7 - 11*C1**5 + 19*C1**3 - 9*C1) + 6/(C1**5 - 10*C1**3 + 9*C1) - 6/(C1**3 - 9*C1)), log(C1**6/(C1**5 + 2*C1**4 - 8*C1**3 - 18*C1**2 - 9*C1) + C1**4/(C1**5 + 2*C1**4 - 8*C1**3 - 18*C1**2 - 9*C1) + 3*C1**4/(C1**4 + C1**3 - 9*C1**2 - 9*C1) - 5*C1**2/(C1**5 + 2*C1**4 - 8*C1**3 - 18*C1**2 - 9*C1) - 6*C1**2/(C1**4 + C1**3 - 9*C1**2 - 9*C1) - 10*C1**2/(C1**3 - 9*C1) + u + 3/(C1**5 + 2*C1**4 - 8*C1**3 - 18*C1**2 - 9*C1) + 3/(C1**4 + C1**3 - 9*C1**2 - 9*C1) - 6/(C1**3 - 9*C1)), log(C1**6/(C1**5 - 2*C1**4 - 8*C1**3 + 18*C1**2 - 9*C1) + C1**4/(C1**5 - 2*C1**4 - 8*C1**3 + 18*C1**2 - 9*C1) - 3*C1**4/(C1**4 - C1**3 - 9*C1**2 + 9*C1) - 5*C1**2/(C1**5 - 2*C1**4 - 8*C1**3 + 18*C1**2 - 9*C1) + 6*C1**2/(C1**4 - C1**3 - 9*C1**2 + 9*C1) - 10*C1**2/(C1**3 - 9*C1) + u + 3/(C1**5 - 2*C1**4 - 8*C1**3 + 18*C1**2 - 9*C1) - 3/(C1**4 - C1**3 - 9*C1**2 + 9*C1) - 6/(C1**3 - 9*C1))] No algorithms are implemented to solve equation -C2 - t + log(u + (C1**6/(C1 + 1)**2 + 3*C1**4/(C1 + 1) + C1**4/(C1 + 1)**2 - 10*C1**2 - 6*C1**2/(C1 + 1) - 5*C1**2/(C1 + 1)**2 - 6 + 3/(C1 + 1) + 3/(C1 + 1)**2)/(C1**3 - 9*C1))/(2*(C1 + 1)) - log(u + (C1**6/(C1 - 1)**2 - 3*C1**4/(C1 - 1) + C1**4/(C1 - 1)**2 - 10*C1**2 + 6*C1**2/(C1 - 1) - 5*C1**2/(C1 - 1)**2 - 6 - 3/(C1 - 1) + 3/(C1 - 1)**2)/(C1**3 - 9*C1))/(2*(C1 - 1)) + log(u + (4*C1**6/((C1 - 1)**2*(C1 + 1)**2) + 6*C1**4/((C1 - 1)*(C1 + 1)) + 4*C1**4/((C1 - 1)**2*(C1 + 1)**2) - 10*C1**2 - 12*C1**2/((C1 - 1)*(C1 + 1)) - 20*C1**2/((C1 - 1)**2*(C1 + 1)**2) - 6 + 6/((C1 - 1)*(C1 + 1)) + 12/((C1 - 1)**2*(C1 + 1)**2))/(C1**3 - 9*C1))/((C1 - 1)*(C1 + 1))