Internal
problem
ID
[2807]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.2
(Stability
of
linear
systems).
Page
383
Problem
number
:
9
Date
solved
:
Tuesday, March 04, 2025 at 02:42:55 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*y(t), diff(y(t),t) = -2*x(t), diff(z(t),t) = 2*h(t), diff(h(t),t) = -2*z(t)]; dsolve(ode);
ode={D[x[t],t]==0*x[t]+2*y[t],D[y[t],t]==-2*x[t],D[z[t],t]==2*h[t],D[h[t],t]==-2*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t],h[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") h = Function("h") ode=[Eq(-2*y(t) + Derivative(x(t), t),0),Eq(2*x(t) + Derivative(y(t), t),0),Eq(-2*h(t) + Derivative(z(t), t),0),Eq(2*z(t) + Derivative(h(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t),h(t)],ics=ics)