15.18.5 problem 5

Internal problem ID [3248]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 35, page 157
Problem number : 5
Date solved : Monday, January 27, 2025 at 07:27:31 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} x^{\prime \prime }&=\frac {k^{2}}{x^{2}} \end{align*}

Solution by Maple

Time used: 0.710 (sec). Leaf size: 385

dsolve(diff(x(t),t$2)=k^2/x(t)^2,x(t), singsol=all)
 
\begin{align*} x &= \frac {c_{1} \left (c_{1}^{2} k^{4}+2 k^{2} c_{1} {\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{4}-2 \textit {\_Z} \,c_{1}^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}-2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_2 -2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}+{\mathrm e}^{2 \operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{4}-2 \textit {\_Z} \,c_{1}^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}-2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_2 -2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{4}-2 \textit {\_Z} \,c_{1}^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}-2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_2 -2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}}{2} \\ x &= \frac {c_{1} \left (c_{1}^{2} k^{4}+2 k^{2} c_{1} {\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{4}-2 \textit {\_Z} \,c_{1}^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_2 +2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}+{\mathrm e}^{2 \operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{4}-2 \textit {\_Z} \,c_{1}^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_2 +2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{4}-2 \textit {\_Z} \,c_{1}^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_2 +2 \,\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.191 (sec). Leaf size: 71

DSolve[D[x[t],{t,2}]==k^2/x[t]^2,x[t],t,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left (\frac {2 k^2 \text {arctanh}\left (\frac {\sqrt {-\frac {2 k^2}{x(t)}+c_1}}{\sqrt {c_1}}\right )}{c_1{}^{3/2}}+\frac {x(t) \sqrt {-\frac {2 k^2}{x(t)}+c_1}}{c_1}\right ){}^2=(t+c_2){}^2,x(t)\right ] \]