Internal
problem
ID
[2890]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
6,
page
25
Problem
number
:
20
Date
solved
:
Tuesday, March 04, 2025 at 03:00:58 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=(3*x*y(x)-2*x^2)*diff(y(x),x) = 2*y(x)^2-x*y(x); ic:=y(1) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=(3*x*y[x]-2*x^2)*D[y[x],x]==2*y[x]^2-x*y[x]; ic=y[1]==-1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) + (-2*x**2 + 3*x*y(x))*Derivative(y(x), x) - 2*y(x)**2,0) ics = {y(1): -1} dsolve(ode,func=y(x),ics=ics)