Internal
problem
ID
[3308]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
37,
page
171
Problem
number
:
24
Date
solved
:
Monday, January 27, 2025 at 07:33:03 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
Time used: 0.033 (sec). Leaf size: 118
\begin{align*}
x \left (1-\frac {c_{1}}{\left (-2 x +\sqrt {x \left (x +y \left (x \right )\right )}\right ) \left (\frac {-2 x +\sqrt {x \left (x +y \left (x \right )\right )}}{x}\right )^{{1}/{3}} \left (\frac {x +\sqrt {x \left (x +y \left (x \right )\right )}}{x}\right )^{{2}/{3}}}\right ) &= 0 \\
x \left (1+\frac {c_{1}}{\left (2 x +\sqrt {x \left (x +y \left (x \right )\right )}\right ) \left (\frac {-2 x -\sqrt {x \left (x +y \left (x \right )\right )}}{x}\right )^{{1}/{3}} \left (\frac {x -\sqrt {x \left (x +y \left (x \right )\right )}}{x}\right )^{{2}/{3}}}\right ) &= 0 \\
\end{align*}
Time used: 60.099 (sec). Leaf size: 1178
\begin{align*}
y(x)\to \frac {\sqrt [3]{2} \sqrt {x} \left (x^{3/2}-2 e^{\frac {3 c_1}{2}}\right )}{\sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}+\frac {\sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}{\sqrt [3]{2}}+2 x \\
y(x)\to \frac {\left (1+i \sqrt {3}\right ) \sqrt {x} \left (-x^{3/2}+2 e^{\frac {3 c_1}{2}}\right )}{2^{2/3} \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}{2 \sqrt [3]{2}}+2 x \\
y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt {x} \left (x^{3/2}-2 e^{\frac {3 c_1}{2}}\right )}{2^{2/3} \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}{2 \sqrt [3]{2}}+2 x \\
y(x)\to \frac {\sqrt [3]{2} e^{\frac {3 c_1}{2}} \sqrt {x} \left (2+e^{\frac {3 c_1}{2}} x^{3/2}\right )}{\sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}+\frac {e^{-3 c_1} \sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}{\sqrt [3]{2}}+2 x \\
y(x)\to \frac {1}{4} \left (-\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) e^{\frac {3 c_1}{2}} \sqrt {x} \left (2+e^{\frac {3 c_1}{2}} x^{3/2}\right )}{\sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}+i 2^{2/3} \left (\sqrt {3}+i\right ) e^{-3 c_1} \sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}+8 x\right ) \\
y(x)\to \frac {1}{4} \left (\frac {2 i \sqrt [3]{2} \left (\sqrt {3}+i\right ) e^{\frac {3 c_1}{2}} \sqrt {x} \left (2+e^{\frac {3 c_1}{2}} x^{3/2}\right )}{\sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}-2^{2/3} \left (1+i \sqrt {3}\right ) e^{-3 c_1} \sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}+8 x\right ) \\
\end{align*}