15.20.8 problem 8

Internal problem ID [3316]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 38, page 173
Problem number : 8
Date solved : Monday, January 27, 2025 at 07:33:20 AM
CAS classification : [_dAlembert]

\begin{align*} x&=y y^{\prime }+{y^{\prime }}^{2} \end{align*}

Solution by Maple

Time used: 0.034 (sec). Leaf size: 304

dsolve(x=diff(y(x),x)*y(x)+diff(y(x),x)^2,y(x), singsol=all)
 
\begin{align*} \frac {\left (-y \left (x \right )+\sqrt {y \left (x \right )^{2}+4 x}\right ) c_{1}}{\sqrt {-2 y \left (x \right )+2 \sqrt {y \left (x \right )^{2}+4 x}-4}\, \sqrt {-2 y \left (x \right )+2 \sqrt {y \left (x \right )^{2}+4 x}+4}}+x +\frac {\left (-y \left (x \right )+\sqrt {y \left (x \right )^{2}+4 x}\right ) \left (-\ln \left (2\right )+\ln \left (-y \left (x \right )+\sqrt {y \left (x \right )^{2}+4 x}+\sqrt {2 y \left (x \right )^{2}-2 y \left (x \right ) \sqrt {y \left (x \right )^{2}+4 x}+4 x -4}\right )\right )}{\sqrt {2 y \left (x \right )^{2}-2 y \left (x \right ) \sqrt {y \left (x \right )^{2}+4 x}+4 x -4}} &= 0 \\ \frac {\left (y \left (x \right )+\sqrt {y \left (x \right )^{2}+4 x}\right ) c_{1}}{\sqrt {-2 y \left (x \right )-2 \sqrt {y \left (x \right )^{2}+4 x}-4}\, \sqrt {-2 y \left (x \right )-2 \sqrt {y \left (x \right )^{2}+4 x}+4}}+x -\frac {\left (y \left (x \right )+\sqrt {y \left (x \right )^{2}+4 x}\right ) \left (-\ln \left (2\right )+\ln \left (-y \left (x \right )-\sqrt {y \left (x \right )^{2}+4 x}+\sqrt {2 y \left (x \right )^{2}+2 y \left (x \right ) \sqrt {y \left (x \right )^{2}+4 x}+4 x -4}\right )\right )}{\sqrt {2 y \left (x \right )^{2}+2 y \left (x \right ) \sqrt {y \left (x \right )^{2}+4 x}+4 x -4}} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.645 (sec). Leaf size: 59

DSolve[x==D[y[x],x]*y[x]+D[y[x],x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left \{x=\frac {K[1] \arcsin (K[1])}{\sqrt {1-K[1]^2}}+\frac {c_1 K[1]}{\sqrt {1-K[1]^2}},y(x)=\frac {x}{K[1]}-K[1]\right \},\{y(x),K[1]\}\right ] \]