15.20.14 problem 14
Internal
problem
ID
[3322]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
38,
page
173
Problem
number
:
14
Date
solved
:
Monday, January 27, 2025 at 07:33:39 AM
CAS
classification
:
[_dAlembert]
\begin{align*} 2 {y^{\prime }}^{5}+2 x y^{\prime }&=y \end{align*}
✓ Solution by Maple
Time used: 0.040 (sec). Leaf size: 1295
dsolve(2*diff(y(x),x)^5+2*diff(y(x),x)*x=y(x),y(x), singsol=all)
\begin{align*}
y \left (x \right ) &= \frac {20 \sqrt {5}\, \sqrt {-\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (i \sqrt {3}\, \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}+20 i \sqrt {3}\, x +\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}-20 x \right )}\, \left (-\frac {3 \left (c_{1} +\frac {\sqrt {20 x^{3}+225 c_{1}^{2}}}{15}\right ) \left (i \sqrt {3}-1\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}}{4}+x \left (\left (1+i \sqrt {3}\right ) x \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}}-90 c_{1} -6 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )\right )}{\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (15000 c_{1} +1000 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )} \\
y \left (x \right ) &= -\frac {20 \sqrt {5}\, \sqrt {-\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (i \sqrt {3}\, \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}+20 i \sqrt {3}\, x +\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}-20 x \right )}\, \left (-\frac {3 \left (c_{1} +\frac {\sqrt {20 x^{3}+225 c_{1}^{2}}}{15}\right ) \left (i \sqrt {3}-1\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}}{4}+x \left (\left (1+i \sqrt {3}\right ) x \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}}-90 c_{1} -6 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )\right )}{\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (15000 c_{1} +1000 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )} \\
y \left (x \right ) &= -\frac {20 \sqrt {5}\, \sqrt {\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (i \sqrt {3}\, \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}+20 i \sqrt {3}\, x -\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}+20 x \right )}\, \left (-\frac {3 \left (1+i \sqrt {3}\right ) \left (c_{1} +\frac {\sqrt {20 x^{3}+225 c_{1}^{2}}}{15}\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}}{4}+x \left (x \left (i \sqrt {3}-1\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}}+90 c_{1} +6 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )\right )}{\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (15000 c_{1} +1000 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )} \\
y \left (x \right ) &= \frac {20 \sqrt {5}\, \sqrt {\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (i \sqrt {3}\, \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}+20 i \sqrt {3}\, x -\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}+20 x \right )}\, \left (-\frac {3 \left (1+i \sqrt {3}\right ) \left (c_{1} +\frac {\sqrt {20 x^{3}+225 c_{1}^{2}}}{15}\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}}{4}+x \left (x \left (i \sqrt {3}-1\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}}+90 c_{1} +6 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )\right )}{\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (15000 c_{1} +1000 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )} \\
y \left (x \right ) &= -\frac {\sqrt {10}\, \left (\frac {\left (3 c_{1} +\frac {\sqrt {20 x^{3}+225 c_{1}^{2}}}{5}\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}}{4}+x \left (x \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}}+45 c_{1} +3 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )\right ) \sqrt {\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}-20 x \right )}}{25 \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (15 c_{1} +\sqrt {20 x^{3}+225 c_{1}^{2}}\right )} \\
y \left (x \right ) &= \frac {\sqrt {10}\, \left (\frac {\left (3 c_{1} +\frac {\sqrt {20 x^{3}+225 c_{1}^{2}}}{5}\right ) \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}}{4}+x \left (x \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}}+45 c_{1} +3 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )\right ) \sqrt {\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (\left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{2}/{3}}-20 x \right )}}{25 \left (300 c_{1} +20 \sqrt {20 x^{3}+225 c_{1}^{2}}\right )^{{1}/{3}} \left (15 c_{1} +\sqrt {20 x^{3}+225 c_{1}^{2}}\right )} \\
\end{align*}
✓ Solution by Mathematica
Time used: 2.023 (sec). Leaf size: 2226
DSolve[2*D[y[x],x]^5+2*D[y[x],x]*x==y[x],y[x],x,IncludeSingularSolutions -> True]
Too large to display