15.23.6 problem 6

Internal problem ID [3356]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 41, page 195
Problem number : 6
Date solved : Monday, January 27, 2025 at 07:34:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 47

Order:=6; 
dsolve(9*x^2*diff(y(x),x$2)+(2+3*x)*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} x^{{1}/{3}} \left (1-\frac {1}{2} x +\frac {1}{20} x^{2}-\frac {1}{480} x^{3}+\frac {1}{21120} x^{4}-\frac {1}{1478400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} x^{{2}/{3}} \left (1-\frac {1}{4} x +\frac {1}{56} x^{2}-\frac {1}{1680} x^{3}+\frac {1}{87360} x^{4}-\frac {1}{6988800} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 90

AsymptoticDSolveValue[9*x^2*D[y[x],{x,2}]+(2+3*x)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \sqrt [3]{x} \left (-\frac {x^5}{1478400}+\frac {x^4}{21120}-\frac {x^3}{480}+\frac {x^2}{20}-\frac {x}{2}+1\right )+c_1 x^{2/3} \left (-\frac {x^5}{6988800}+\frac {x^4}{87360}-\frac {x^3}{1680}+\frac {x^2}{56}-\frac {x}{4}+1\right ) \]